If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2+320x+672=0
a = 36; b = 320; c = +672;
Δ = b2-4ac
Δ = 3202-4·36·672
Δ = 5632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5632}=\sqrt{256*22}=\sqrt{256}*\sqrt{22}=16\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(320)-16\sqrt{22}}{2*36}=\frac{-320-16\sqrt{22}}{72} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(320)+16\sqrt{22}}{2*36}=\frac{-320+16\sqrt{22}}{72} $
| 6c-2c=8 | | 36x^2+540x+1800=0 | | -7b-28=-7(7b-8) | | 3/5x+5=2/5x+10 | | 2x-1=x+$ | | 10u+20=90 | | 2(u+3)=12 | | x+4x×1/4x=8 | | x+11÷2=-14 | | 16=20-2r | | -272=-8(5m+4) | | 14x+-23=14-23 | | -(2/7x+3)+2x=3x-7 | | q-60=16 | | 5(3-x)+6x=3x+15+2x | | -23+-14=14x-23 | | n+9÷3=8 | | 28x^2-84x+56=0 | | 3x+12+x+4=180 | | n+8÷3=8 | | 96=8(j+1) | | n=8(6) | | 5(3-x)+7x=3x+15-x | | m-19=2 | | 3(2x+4)-2(x-2)=2x+36 | | -2(1+7x)=-100 | | 18j/4=7 | | 24a-22=-4{1-6a} | | 7x+2-2(3x-1)=0 | | x/7=3/4 | | 5x/9=8/3 | | 8x+17=-7 |